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Abstract--The macroscopic governing equations for the turbulent flow through porous media consisting 
of packed spheres are examined and the 0-equation model is proposed. In the process of deriving the 
macroscopic governing equations by using the local volume averaging technique, we consider the effective 
eddy diffusivity as the algebraic sum of the eddy diffusivities estimated from two types of vortices : (i) the 
pseudo vortex of the order of the particle diameter, and (ii) the interstitial vortex between the solid particles. 
Furthermore, it is shown that the 0-equation model proposed in this study can predict the flow and heat 

transfer characteristics at high Reynolds number. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

Examining a turbulence model for the flow and heat 
transfer characteristics in a turbulent field through 
porous media is of importance in such a prediction of 
the thermal dispersion in packed beds. The macro- 
scopic conservation equations in porous media can be 
obtained by locally averaging microscopic con- 
servation equations over a representative volume [1], 
and a physical quantity is related with the local volume 
average of fluid phase or solid phase. Likewise, we 
have to construct the turbulence model which reflects 
the microscopic vortex behaviors intrinsic to porous 
media. Thus we should notice that the eddy viscosity 
for porous media has a close relevance to the micro- 
scopic turbulence mixing and the geometric structure 
in porous media. 

The Forchheimer flow resistance and dispersion, 
which are the phenomena observed in the flow 
through porous media at high Reynolds number, have 
been interpreted by using the concept of laminar flow 
theory [e.g. 2-9]. Vafai and Tien [2] considered the 
Forchheimer flow resistance as an inertial effect of 
flow offered through the solid matrix (form drag). 
Many models of the dispersion have been derived 
from the correlation term between the spatial fluc- 
tuations of the velocity and temperature (or con- 
centration) quantities. On the other hand, there is an 
interesting report [10] in which the turbulence vortices 
begin to appear at Red ~ 10 and gradually cover the 
flow domain (pore space) as Reynolds number 
increases, and the velocity measurements with a hot- 
wire anemometer confirm the existence of turbulence 
in packed beds [11, 12]. In addition to these reports, 
there exist many experiments [13-20] in which the 
deviation from Darcy's law is observed at Red ~ 10 
and not only the effect of the Forchheimer flow resist- 
ance, but also the effect of the dispersion, gradually 

become predominant as the Reynolds number 
increases. Judging from the above, it seems reasonable 
to suppose that the Forchheimer flow resistance and 
the dispersion are caused mainly by turbulent mixing 
(diffusion) in porous media. Lee and Howell [21] pro- 
posed the k-e model for flow through porous media 
with high porosity and considered the same eddy vis- 
cosity for porous media as one which is commonly 
used for the pure fluid. Travkin et al. [22] developed 
the turbulence model in highly porous media along 
with a statistical and numerical methodology. 

In this study, examining the behavior of the micro- 
scopic turbulent field intrinsic to porous media, we 
construct the macroscopic governing equations for 
turbulent flow through porous media consisting of 
packed spheres and clarify the relation between the 
momentum and energy transports due to the turbulent 
vortex mixing at high Reynolds number. The closure 
schemes for the Reynolds stress tensor and the tur- 
bulent heat flux vector are obtained based on the 
eddy viscosities and the eddy thermal conductivities 
estimated from two types of vortices. Furthermore, a 
0-equation model for the eddy diffusivity is proposed 
and it is shown that the Forchheimer flow resistance 
and the thermal dispersion can be explained from the 
present 0-equation model. 

MOMENTUM EQUATION 

We present a brief discussion on local volume aver- 
aging by Slattery [1] (see Fig. 1). If B is any scalar, 
spatial vector or second-order tensor associated with 
the fluid-phase, the local volume average over Vr of a 
quantity B associated with the fluid-phase is defined 
a s  

( B )  ~0 = B d V  (1) 
f 
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NOMENCLATURE 

A~ interracial area between fluid and solid 7 
phases in Fig. I 

c specific heat ).f 
d, particle diameter 2,, 
I identity tensor 
k turbulent kinetic energy 
K permeability 2p 
P pressure 
Pe Peclet number defined in equation (47) 5.~ 
Pea particle Peclet number defined in 2, 

equation (52) 
Pr, turbulent Prandtl number 2, p 
q heat flux vector ).,.v 
Red particle Reynolds number p 
S molecular stress tensor defined in It, 

equation (6) 
S, turbulent stress tensor defined in p, ~, 

equation (7) /~, 
t time p 

U time-averaged microscopic velocity a 
vector 

V elementary volume. 

eddy viscosity ratio defined in equation 
(43) 
thermal conductivity of fluid phase 
effective thermal conductivity of 
porous medium saturated with stagnant 
fluid [23] 
thermal dispersion defined in equation 
(35) 
thermal conductivity of solid phase 
eddy (turbulent) thermal conductivity 
defined in equation (27) 
pseudo eddy thermal conductivity 
void eddy thermal conductivity 
viscosity 
eddy (turbulent) viscosity in equation 
(13) 
pseudo eddy viscosity 
void eddy viscosity 
density 
correction factor defined in equation 
(14) 
thermal conductivity ratio --- )o~/2f. 

Greek symbols 
thermal difl'usivity - 2,/(ptc0 

0 porosity 

Subscripts 
f associated with fluid phase 
s associated with solid phase. 

and the local volume average over V~ of a quantity B 
associated with the solid-phase is defined as 

( B > . ,  _= BdV. (2) 

Furthermore, the theorems for the volume average 
of a gradient and a divergence is expressed by equa- 
tions (3) and (4), respectively 

I f BndA < w > ' '  = v<8>' '+  ~ ,. (3) 

1 f B .ndA (4) <div B> °' = div (B> °~ + ~ ,,, 

Fig. 1. Control volume of local volume averaging lbr porous 
structure. 

where Aw is the area of the interface between the fluid 
and solid phase in V(= V~.+ V~). We will derive the 
macroscopic governing equations for turbulent flow 
through porous media by the above local volume aver- 
aging technique. 

In the turbulent flow through porous media, the 
microscopic momentum equation can be given by the 
Reynolds equation coupled with Boussinesq's eddy 
viscosity formulation V 

v: 

Vs where 

(5) 

S = 2 # D -  PI (6) 

S, = 2/t,D-2~kl (7) 

O = ~ [vu+  (vu)~]. (s) 

if the eddy viscosity /~t is assumed to be constant 
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Pseudo vortex Particle 
Fig. 2. Schematic model of vortices in packed beds. 

within V,,, the local volume average of equation (5) 
leads to the macroscopic Reynolds equation for the 
turbulent flow through porous media. 

[-~(U)C° ~_ (div (UU))(°]  = (div (S + S0)(°. 

(9) 

The drag forces around the solid particles can be 
derived from the right hand side of the above equation 
with the aid of equation (4). 

( d i v S )  (r) = d iv(S) (°  + ~ff S ' n d A  (10) 
w 

(d ivS , )  (° = d iv (S t ) (~+  ~ S t ' n d A .  (11) 
w 

The second term on the right hand side of equation 
(10) is the drag force caused by the molecular stress 
tensor S and that of equation (11) is the drag force 
caused by the Reynolds (turbulent) stress tensor S ,  
We recognize that the second term on the right hand 
side of equation (10) is the original Darcy flow resist- 
ance. 

1 IA S ' n d A  = -~--~(U)(~" (12) 
vf 

Whereas, Vafai and Tien [2] formulate the above 
equation by a linear combination of Darcy's flow 
resistance and Forchheimer's flow resistance, we con- 
sider Forchheimer's flow resistance to be relevant to 
the drag force due to the turbulent mixing. 

We now discuss the Reynolds stress tensor St. As 
shown in Fig. 2, it is expected that two types of vortices, 
namely the void and pseudo vortices, play an impor- 
tant role in the transport mechanism of the turbulent 

flow through porous media. Taking notice of the flow 
along the solid particles, we can suppose that there 
arises the forced flow distortion due to the inter- 
ruption of the solid particles, The flow distortion will 
transport the fluid lump far away and cause the associ- 
ated exchange of momenta. So we refer to this momen- 
tum diffusion as the mixing of the pseudo vortex. The 
void vortex is the interstitial vortex which is formed 
in the pore between the solid particles. It can be esti- 
mated that the characteristic length scale of the pseudo 
vortex is the order of magnitude of the particle diam- 
eter dp and that of the interstitial vortex is of the gap 
width w/K. Thus we consider the eddy viscosity Pt in 
equation (7) as the algebraic sum of the eddy vis- 
cosities defined by the characteristic length scales of 
the pseudo and void vortices : 

~ t  = ] A t , P " [ - # t , V  (13) 

where the first term on the right hand side of equation 
(13) is the pseudo eddy viscosity gt,P characterized by 
the pseudo vortex and the second term is the void 
eddy viscosity/tt,v by the void vortex. It is fair to say 
that the Reynolds stress tensor related to the void 
eddy viscosity, which is characterized by the inter- 
stitial vortices, contributes toward the drag force, 
because the pseudo vortex takes a role of the long- 
distance momentum transport owing to the forced 
flow distortion, while the void vortex directly deter- 
mines the velocity profile of the turbulent shear flow 
along the solid particle due to the effect of its short- 
distance momentum exchange. Furthermore, equa- 
tion (11) reduces to equation (14) on the grounds that 
the drag force caused by the molecular stress S tensor 
is expressed by equation (12) 

• ( ~  /-it v 
(d ivSt )  Ct) = d iv (S t )  -o 'q~z-~-(U) (0 (14) 

where a is the correction factor which is introduced to 
extend the concept of the hydrodynamic conductance 
defined by Darcy's law to the turbulent flow. We esti- 
mate the correction factor as a ~ 1 by considering the 
similar contributions of the turbulent kinetic energy k 
and the pressure P to the stress tensors defined by 
equations (6) and (7). Here we may note that the 
second term on the right hand of equation (14) rep- 
resents the damping effect due to the void vortex 
associated with the local homogeneous and isotropic 
effects of turbulence. 

Next we shall concentrate on the inertial term of 
equation (9). The microscopic velocity vector U can 
decompose into the sum of the mean velocity vector 
( U )  ~° (spatial average) and the deviation velocity vec- 
tor u v (spatial fluctuation), i.e. 

( U )  = U d V + u  v = (U)(O+u v. (15) 

Substituting equation (15) into the inertial term of 
equation (9) gives 
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div <UU>" = div [<U>"3(U> ' ' ]  +div <uVuV> "-'. 

(16) 

The porous structures are commonly held periodic 
in the representative length scale related to the rep- 
resentative volume V, so that the spatial fluctuation 
may be considered as the almost periodic function 
of the representative length scale. As the divergence 
operator is valid for the representative length scale in 
principle, it is supposed that the second term on the 
right hand of equation (16) is negligible due to its 
periodic nature as compared to the first term. There- 
fore, the inertial term can be approximated by 

div(UU) "~ = div [<U)'~(U)~f~]. (17) 

By the above closure modeling for the drag force 
and the inertia, the macroscopic momentum equation 
for the turbulent flow through porous media becomes 

I ~(U~''~ l ' ~  " " f fl (f) Pr ~ + d w ~ ( U >  (U> ~ = d i v ( S + S , / ' ~  

- ¢ ~  <u>'". (J8) 

ENERGY EQUATION 

The microscopic energy equations for the fluid and 
solid phases are given by 

?T 
p~,ct.~ +poet div (UT)+divqf = 0 (19) 

?T 
p4'~ ? t  +divq~ = 0 (20) 

where the heat flux vectors for the fluid and solid 
phases are 

%. = - ()¢+ )~,)VT (21) 

q~ = -2~VT. (22) 

With the aid of" equations (1) and (2), the local 
volume averages of equations (19) and (20) yield the 
macroscopic energy equations for the fluid and solid 
phases. 

~< T>I" 
pf@ ~ + prcf div <U T> ~'~ 

+ d i v ( q f > " +  qr 'ndA = 0  (23) 

~<T> I~'l 1 f. -- -- q~ "ndA = 0. p~c~ ~?t +div(q~>t~ V. ~ 

(24) 

As the heat flux vector is continuous at the interlace 
between the fluid and solid phases, the interface con- 
dition is given by 

A qf 'ndA = f~,, q~'ndA. (25) 

Substituting equations (23) and (24) into the above 
interface condition leads to 

q5 -Prcf ~ +div <UT>(°} + div (qr>' '  1 [  { 

[ 0 ( T > N + d i v ( q ~ > " ) ] = 0 .  (26) + ( l - O )  p~c~ ~ 

We shall now focus on the eddy thermal conduc- 
tivity. Suppose that an analogy exists between the 
eddy viscosity and the eddy thermal conductivity, the 
eddy thermal conductivity 2, can be represented as 
the algebraic sum of the eddy thermal conductivities 
defined by the characteristic length scales of the 
pseudo and void vortices : 

2, = 2,,p + 7'~:.~. (27) 

where the first term on the right hand side of the above 
equation is the pseudo eddy thermal conductivity ),~.e 
characterized by the pseudo vortex and the second 
term is the void eddy thermal conductivity 2,v by the 
void vortex. The pseudo vortex contributes to the 
long-distance heat transport due to the forced flow 
distortion, so that the thermal tortuosity cannot be 
produced from the heat flux vector related to the 
pseudo eddy thermal conductivity. Accordingly, the 
heat flux vectors can be reduced to equations (28) and 
(29) with the aid of equations (1) and (2): 

<q,>,.,= _(~,+2,)V<T>,,~ 2,-+).t.vf TndA 
V f  4~ 

(28) 

)~ f.~ TndA. (29) <q~/~' = -).~V<T>'"+ 

We define the local volume average of temperature 
over the fluid and solid phases 

'f, <T> ' m ' = ~  . T d V = q S < T > " ) + ( I - ~ b ) < T / "  

(30) 

and we make use of the local thermal equilibrium 
assumption [1] 

< T> '°'' = < T> ' '  = < T> '~'. (31) 

As we have mentioned in the preceding section, the 
spatial fluctuation may be considered as the almost 
periodic function of the representative length scale 
since the porous structures are commonly held 
periodic. Therefore the correlation term between the 
spatial fluctuations of the velocity and temperature 
quantities, which has been related to the thermal dis- 
persion effect in the previous studies [5-9]. can be 
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neglected and the enthalpy transport term in equation 
(26) can be approximated by 

div(UT> (~ = div [(U>~(T>(m)]. (32) 

Furthermore, introducing the concept of the effec- 
tive thermal conductivity proposed by Kunii and 
Smith [23] leads to 

2eV (T>  (m) = {~12f 21- (1 -- ~b)2s}V( T> (m) 

+ 2f--,~s f V JA~ rndA.  (33) 

By the above closure modeling for the turbulent 
heat flux and enthalpy transport terms, the macro- 
scopic energy equation for the turbulent flow through 
porous media becomes 

, ,  ,63<T> (m) 
[dppm + (1 - ¢)p~c~j 

+ 4)pfcf div [(U> + (T> (m)] = div [20 V( T> ~m)] (34) 

where 

2p = ,L + 4',~t +f&,v (35) 

xo - {4,2~ + (1 - ~)2~} 
f = (36) 

2f -- 2 s 

O-EQUATION MODEL 

In this section, we propose the 0-equation model 
for the eddy viscosity and the eddy thermal con- 
ductivity in the macroscopic momentum and energy 
equations which have been constructed in the fore- 
going sections. From equation (18), the momentum 
equation in the fully developed one-dimensional tur- 
bulent flow is represented by 

~P #t ,v . ,  
~x = a--K- u. (37) 

With the aid of the Kolmogorov-Prandtl expres- 
sion [24], the void eddy viscosity/~t,v becomes 

~t,V = C#pf ~ L .  (38) 

If the velocity scale x/~ is of order ~ and the 
length scale L is of order ~/~, the void eddy viscosity 
/~t.v is estimated as 

"t.V ~ Pf ~ ~ '  (39) 

On the other hand, the empirical correlation for 
the flow resistance of packed beds at high Reynolds 
number [13] is given by 

~?P = F -pfU2 (40) 

1.75 
F (packed bed). (41) 

Equation (40) is the so-called Forchheimer flow 

resistance. Comparing equations (37) and (40), we 
write the void eddy viscosity/~t.v as 

F 
= ~pf x/U7 xfK.____ (42) gt,v 

It is noteworthy that the void eddy viscosity 
obtained from the Kolmogorov-Prandtl expression 
[equation (39)] is the same as from the empirical cor- 
relation. From this fact, we may deduce the Forch- 
heimer flow resistance from the mixing (diffusion) 
process to which the void vortex contributes. 

We focus on the mutual relation between the void 
and pseudo eddy viscosities (thermal conductivities). 
The eddy viscosity ratio 7 is defined as 

#t,P - - .  (43) 
Y =/A.v 

By introducing the turbulent Prandtl number Prt 
which is assumed to be independent of the vortex 
length scale, the void and pseudo eddy thermal con- 
ductivities are 

cf 
"~t,P = egt ~t,P (44) 

Cf 
2t'v = egt ~t,v. (45) 

With the aid of equations (43)-(45), equation (35) 
can be rewritten as 

~'p Ae 2t 2t V 2e 

where 

F{~b(y + l) + f }  
a P r  t 

e e  

(46) 

Pe - x f ~  x / ~  (47) 

If the turbulent Prandtl number Prt is independent 
of the Peclet number Pe, the relationship [7, 9, 14] 
where the thermal dispersion 2p is proportional to 
the Peclet number Pe is derived from equation (46). 
Furthermore, with the aid of the Blake and Kozeny 
expression [13] for the permeability of packed beds 

K - q~3d~ (48) 
150(1 --  q~)2 

the eddy viscosity ratio y is estimated as 

7 ~ ~ K  ~ 30 (49) 

where the porosity is treated as 0.4. 
The contribution of the eddy viscosity ratio y to the 
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Table 1. Relationship between the thermal conductivity ratio { and the coefficientjl 

0.01 0.1 I 10 100 

fi 1.02×10 ~ 9.37x10 2.00×t0 ~ 2.93x10 ~ 5.15×10 

thermal dispersion is shown in Fig. 3 with the empiri- 
cal correlation obtained by Yagi et al. [14] 

2p = 7.5+0.SPed (glass spheres) (50) 

)~P - 13+0.7P<~ (steel spheres) (51) 

where the particle Peclet number Ped is 

Ped = Pe dp~_ - v U2dp (52) 
\ / K  

It can be seen from Fig. 3 that the increase of  the 
eddy viscosity ratio enhances the thermal dispersion 
and that such a tendency is remarkable in the region 
of  high particle Peclet number. The present result of  
7 = 100 is in good agreement with the empirical data 
of  Yagi et al. Though this value of  the eddy viscosity 
ratio 7 = 100 is somewhat greater than the value esti- 
mated from equation (49), both can be considered to 
be of  the same order of  magnitude. 

Table 1 indicates the relationship between the ther- 
mal conductivity ratio { and the coefficient,/i defined in 
equation (36) at the porosity q5 = 0.4. The coefficient.If 
is very small compared with the eddy viscosity ratio 
7 =  100. Judging from this fact, the contribution of  
the void eddy thermal conductivity to the thermal 
dispersion is negligible. In other words, the mixing of  
the pseudo vortex mainly contributes to the thermal 
dispersion and equation (46) reduces to 

7 = = + crPr, Fe. (53) 
AI /'1 

104 

Present Theory (~ =10, Prt=0.9, ~=1.0) / ' "  1 7 =10 
lO 3 

. . . . . .  ~ =40 . . . ~  ~ .  

- - -  =,00 J " 7 - "  ! 
"-~'~ . . . . .  7 =400 . t " ' "  ~ - " "  " ~ 10 2 ~ " ' / ' "  . - ' ' ' "  { 

101 Empirical Data of Yagi et al. 
----o--- Glass Spheres 

Steel Spheres 
10 0 . . . . . . .  I 

10 0 l0 ! 10 2 10 3 

P e  d 

Fig. 3. Comparison of the present model with the empirical 
data of Yagi et al. [14]. 

CONCLUDING REMARKS 

This study proposes a model of  vortex transports 
of  turbulent flow through porous media, comparing 
the theoretical results with the previous experimental 
results. The following conclusions are derived : 

(1) The momentum and energy transports in the 
turbulent flow through porous media can be explained 
rationally by introducing the concept of  two types of  
vortices. One is the interstitial (void) vortex of  the 
order of the thickness of  the gap width x//K which is 
formed in the pore between particles and the other is 
the pseudo vortex of  the order of  the particle diameter 
dp which reflects the forced flow distortion due to the 
interruption of  the solid particles. 

(2) Considering the eddy diffusivity as the algebraic 
sum of the eddy diffusivities defined by the charac- 
teristic length scales of  the pseudo vortex and the void 
vortex, we have constructed the macroscopic momen-  
tum and energy equations for turbulent flow through 
porous media. 

(3) The Forchheimer flow resistance and the ther- 
mal dispersion which are reported in the previous 
experiments at high Reynolds number are well 
described by the present 0-equation model, and it is 
clarified that the mixing of  the void vortex mainly 
contributes to the Forchheimer flow resistance and the 
mixing of  the pseudo vortex to the thermal dispersion. 
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